
Meas. Sci. Technol. 8 (1997) 1553–1561. Printed in the UK PII: S0957-0233(97)83910-0

Lagrangian statistics and transilient
matrix measurements by PTV in a
convective boundary layer

A Cenedese †‡ and G Querzoli §

† DITS, La Sapienza University, Via Eudossiana 18, 00184, Rome, Italy
§ Civil Engineering Department, Tor Vergata University, Via di Tor Vergata, 00133,
Rome, Italy

Received 6 May 1997, accepted for publication 30 September 1997

Abstract. The most common velocity measurement techniques, based on image
analysis, calculate the velocity by cross-correlation of a portion of the digitized
images, and give a Eulerian description of the investigated field. Particle tracking
velocimetry (PTV), based on the recognition of trajectories of seeding particles,
only furnishes a Eulerian description provided the trajectories are shorter than the
characteristic scale of the phenomenon. If particles are tracked for a longer time, a
Lagrangian description is obtained. Consequently, in order to successfully evaluate
Lagrangian statistics, a long series of single-exposed images has to be acquired.
PTV has been used to examine the pollutant dispersion in a laboratory simulation
of the convective boundary layer of the atmosphere. The convective layer has
been simulated by a water tank heated from below, where the atmospheric thermal
stratification has been reproduced. Though the phenomenon was observed to be
steady in the Eulerian reference frame, the same did not occur in the Lagrangian
reference frame. From the analysis of particle motion, it is possible to determine
the characteristic time scale of the turbulence and to describe the different
behaviour of hot updraughts and cold downdraughts. The pollutant dispersion is
described in detail by the transilient matrix representing the probability of transition
of a particle from one level to another of the convective layer. From the information
given by this matrix, it is possible, in principle, to estimate the concentration fields,
due to a variety of concentrated and distributed pollutant sources.

1. Introduction

Velocity measurement techniques based on image analysis
strongly depend on the level of seeding of the working
fluid. This level can be defined by first comparing the mean
particle distance with the particle displacement between
two successive acquisitions and then with the smallest
spatial scale of the velocity field structure relevant to the
investigation. If the mean distance is much smaller than
this scale (high seeding levels), images are analysed by
means of the (auto- or cross-) correlation function and this
particular technique is called particle image velocimetry
(PIV) (Adrian 1991, Keane and Adrian 1992, Lorenc¸o
1996, Raffel and Kompenhans 1996). If the mean distance
between particles is of the same order or larger than
this scale, statistical analysis over uniform regions is not
reliable. In this case, the velocity is obtained from the
identification of the trajectory of each particle and this
technique is called particle tracking velocimetry (PTV)
(Nadeem and Dracos 1993, Querzoli 1996, Virant and
Dracos 1996).
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In PIV, the investigation field is divided into small
regions that are individually analysed and one velocity
value per region is obtained. This value is representative of
the velocity of all the particles found on the analysed area.
This means that PIV results in a succession of velocity
values at fixed locations, i.e. in a Eulerian description of
the velocity field.

Conversely, PTV gives velocity samples along the
particle trajectories, that is in a Lagrangian frame of
reference. If the length of the trajectories is small
compared to the characteristic time scale of the fluid
motion, the information is ‘locally Lagrangian’. It differs
from that obtained from PIV only because the velocity is
measured at random locations instead of over a regular grid
(one sample per tracked particle is measured rather than
averaging over an interrogation area). From the random
distribution of samples, the velocity field over a spatial
grid can be calculated by interpolation. Nevertheless,
there are some phenomena that are naturally described
in a Lagrangian frame of reference. For example, in
studying pollutant dispersion, the dispersion coefficient
can be computed according to Taylor theory from particle
displacement statistics (Monin and Yaglom 1971). For the
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Figure 1. Structure of the atmospheric convective boundary layer. θ is the potential temperature, U the mean wind.

Figure 2. Sketch of the convection chamber and heating
system.

full Lagrangian description, particles have to be tracked for
a period of several time scales of the phenomenon. This
is possible only if a long series of single-exposed images
is acquired so that the number of particles to be taken into
account, for the trajectory recognition at each time, does
not depend on the total duration of the acquisition. It may
be noticed that from a Lagrangian data set, both Lagrangian
and Eulerian statistics can be calculated. On the contrary,
the calculation of Lagrangian statistics from a Eulerian
data set is much more complicated since it involves the
integration in time of the instantaneous Eulerian velocity
field.

PTV has been applied to a laboratory model of the
convective boundary layer of the atmosphere. From
trajectory statistics, the probability distribution of transition
between different levels has been computed under the
assumption of a steady, horizontally homogeneous velocity
field in the Eulerian reference frame.

2. Lagrangian statistics

In particle tracking, seeding particles are followed during
their motion within the measuring volume, by evaluating

Figure 3. Particle tracking of single-exposed images.
Numbers indicate the time of acquisition of the particle
centroid locations.

the velocity from the displacement of each particle from
one image to the next, i.e. the velocity samples are
associated with fluid particles rather than merely with
a location, i.e. in a Lagrangian reference frame. In
general, 3D PTV measurements are possible (Nadeem and
Dracos 1993, Virant and Dracos 1996). Nevertheless, in
the present experiment only two components of particle
location and velocity are determined, this means that only
the statistics involving the two measured components are
actually evaluable.

Let T be the total acquisition time and1t the time
interval between subsequent images; the position of a
particle is known at a discrete series of timestj = j1t ,
j = 1, . . . , N , whereN = T/1t . Each successful tracking
of a particle gives a trajectory described by the vector
(Monin and Yaglom 1971)

X =X(m, j) (1)

that indicates the position as a function of the particlem and
of discrete timej . To identify the particles, a progressive
numeration is used instead of the initial position of the
particle because not all particles are present at the initial
time. Since the particles can leave or enter the measuring
volume during the acquisition, the trajectory is known only
between its initial timej0m and its final timejfm . The
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Figure 4. A sequence of superimposed images and trajectories recognized by PTV.
(This figure can be viewed in colour in the electronic version of the article; see http://www.iop.org)

velocity field is expressed as a discrete function of the
trajectory (1):

U (m, j)= ∂X(m, t)
∂t

∣∣∣∣
m

= X(m, j+1)−X(m, j−1)

21t
.

(2)
In a Eulerian framework, provided that the phenomenon is
steady and ergodic, the statistics can be computed from the
Lagrangian data by averaging samples of all the trajectories
that reach given locations. For example, the mean velocity
and the variance on a spatial grid is given, respectively, by:

〈u(i)〉 = 1

Ni

∑
m

∑
j

U |G·i(m, j) (3)

and

σ 2
k (i) =

1

Ni

∑
m

∑
j

(Uk|G·i(m, j)− 〈ui(i)〉)2 (4)

where

G =
(
1x 0 0
0 1y 0
0 0 1z

)
is the spatial discretization tensor,

i =
(
ix
iy
iz

)

is the vector of the discrete co-ordinate on the grid; the
summation is limited to the velocity samples at the location
G · i andNi is the number of samples taken into account.

Furthermore, Lagrangian statistics, such as mean
velocity and auto-correlation of a steady (in a Eulerian
sense), ergodic, phenomenon are obtained by averaging
samples from all the trajectories reaching a given location.
The mean velocity is expressed as:

〈U (X, n)〉 = 1

MX,n

∑
m|X,n

U |X(m, jX,m + n) (5)

Figure 5. Probability density distribution of trajectory length
as a function of the non-dimensional time.

where jX,m is the discrete time at which the location
is reached and the summation is limited to theMX,n

trajectories reaching the given location and long enough
for the final time to fulfil the condition:

jfm ≥ jX,m + n. (6)

The Eulerian steadiness implies that the summation on the
right-hand side of (5) does not depend on the initial time
jX,m, nevertheless the Lagrangian average can be time
dependent.

The correlation is:

Rrs(X, n) = 1

MX,n

∑
m|X

Ur(m, jX,m) · Us(m, jX,m + n).
(7)

The Lagrangian correlation coefficient is obtained by
normalizingRrs(i, n) by the velocity variance at location
i:

rrs(X, n) = Rrs(X, n)√〈σ 2
r (X)〉 · 〈σ 2

s (X)〉
. (8)

In a Lagrangian framework, the large-scale characteristics
of the fluid motion are described by the integral Lagrangian
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Figure 6. Probability density distribution of the non-dimensional vertical velocity.

Figure 7. Mean vertical velocity as a function of time in the Lagrangian reference frame at z/zi = 0.25 (full curve),
z/zi = 0.55 (broken curve), z/zi = 0.75 (chain curve).

time scale. In a non-homogeneous turbulent flow,
such as that indicated in this study, some authors state
that the integral of the auto-correlation coefficient is
not the Lagrangian integral time scale (Thomson 1987).
Nevertheless, the above defined scale plays a fundamental
role in Lagrangian stochastic models of particle dispersion
also in the case of strong inhomogeneities of the turbulence
(Monti and Leuzzi 1996). From a theoretical point of
view, it is defined as the integral of the auto-correlation
coefficient, and for a discrete time series it is:

τL,r (X) = 1t ·
∞∑
n=0

rrr (X, n). (9)

As a matter of fact, confidence in the evaluation of the
auto-correlation coefficient decreases strongly with the time
interval n, because the number of relevant trajectories,
MX,n, decreases dramatically. This is why, in order to
represent the integral properties of the phenomenon, the
1/e scale,TL,r , was chosen. It is defined as the time lag
at which the auto-correlation coefficient is reduced to the
1/e value. As a consequence it is computed by taking
into account only values of the auto-correlation for small,
positive, time lags, where the confidence is still high due
to the large number of sufficiently long trajectories.

The transport properties of the phenomenon can be
investigated by a statistic that is in between the Lagrangian
and Eulerian frameworks: the transilient matrix (Stull
1993). In general, a stochastic process is completely
defined by the probability density,p(X1, t1,X2, t2),

of particles starting at timet1 at location X1, and
reaching locationX2 at time t2, that is a function of
eight independent variables. The convective boundary
layer under investigation can be assumed to be steady
and horizontally homogeneous. As a consequence the
probability is only function of five independent variables:
p(z1, z2, t2− t1, x2−x1, y2−y1). Integrating the latter over
the horizontal displacements,δx = x2 − x1, δy = y2 − y1,
yields the probability that a particle moves from a height
z1 to another heightz2 in a given time intervalδt = t2− t1:

tr(z1, z2, δt) =
∫ ∞
−∞

∫ ∞
−∞

p(z1, z2, δt, δx, δy)d(δx) d(δy).

(10)
This statistic is neither Eulerian, because the starting
location of particles is considered, nor Lagrangian because
the statistic is not computed along the trajectories. In the
case of a discretized height, it is a two-dimensional array
function of the time lagδt , whose subscripts indicate the
source and destination levels.

3. Experimental set-up

The atmospheric convective boundary layer generated by
solar radiation on the soil in the late morning and early
afternoon of a sunny day, above a flat terrain, was simulated
by a convection chamber filled with water. The mean wind
was assumed absent or very light, so that the mechanical
production of turbulent kinetic energy is small compared
to the buoyant production. In these conditions, the heating
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Figure 8. Lagrangian auto-correlation coefficient of the vertical velocity at three different heights.

of the soil generates a convective layer that is bounded
from above by a thermally stable layer, namely the capping
inversion, that is slowly eroded by entrainment into the
lower turbulent layer (figure 1).

A sketch of the convection chamber, whose horizontal
dimensions are 41 cm×41 cm is presented in figure 2. From
the point of view of the heat we can consider (Cenedese
et al 1992, Cenedese and Querzoli 1994 and Querzoli
1996):

(i) the bottom, that is an aluminium plate uniformly
heated from below, as isothermal;

(ii) the top, insulated by a polystyrene slab to avoid
cooling due to evaporation, as adiabatic;

(iii) the side walls, made of glass (0.8 cm thick), as
adiabatic.

The following steps are performed during each
experiment:

(i) the tank is filled up to 10 cm with ambient
temperature water;

(ii) a second layer, 10 cm high, of hot water (20◦C
higher than ambient) is stratified above the first one to
generate a thermally stable zone that simulates the capping
inversion of the atmosphere;

(iii) about 5 min after heat is applied to the lower
surface (simulating solar heating of the soil) turbulent
convection is completely developed and acquisition starts.

The water is seeded with polystyrene non-buoyant
particles whose diameter, 0.2 mm, is trivially much smaller
than the scale of the flow under investigation. The number
of particles is chosen so that their displacement between
two successive analysed images is smaller than the mean
distance between the particles. The measuring volume is
illuminated by a 1000 W arc lamp placed 2.5 m away from
the tank so as to obtain an almost parallel light beam. A
beam stop allows the depth of the illuminated area to be
controlled. Adjusting the video-camera optics, the particles
are acquired in a 10.0 cm high, 12.5 cm wide and 5.0 cm
deep volume placed above the lower surface and in the
centre of the tank.

The image acquisition and analysis procedure requires
the following steps (Querzoli 1996).

(i) Images are acquired by a CCD video-camera and
recorded on tape by a video-recorder. During acquisition a
frame code is inserted by an animation controller in order to
identify each single frame acquired during the subsequent
procedure.

(ii) By means of the animation controller one frame
in every ten is automatically identified on the tape and
digitized by a frame grabber on a 512× 512 pixel× 256
grey level array. The whole procedure is automatically
controlled by a personal computer.

(iii) Digitized frames are thresholded and centroids
of the particles are computed and stored together with
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Figure 9. Lagrangian auto-correlation coefficient of the vertical velocity at three heights. Broken curves indicate the
downdraughts; full curves updraughts.

Figure 10. 1/e time scale of the updraughts (full curve) and
downdraughts (broken curve) as a function of the
non-dimensional height.

time information. Only the resolution of the digitized
frame (about 0.2 × 0.2 mm2/pixel), not the seeding
particle dimensions, affects the accuracy of measuring their
positions since the centroids of their images on the frame
are considered. This accuracy is of the order of pixel
dimensions.

(iv) Trajectories are recognized by looking for time-
ordered centroids series that accomplish the following
requirements (figure 3):

• the maximum distance between two particle locations
must be less than a given valueD, i.e. a maximum velocity
is assumed for the flow;
• the maximum difference between two successive

spots must be smaller than a second, given parametere,
i.e. a maximum acceleration is assumed for the flow;
• a trajectory must consist of at least three particle

locations.

The choice of the parametersD and e is crucial: if their
values are too small high-speed particles are not tracked.
On the other hand, if they are too large, a significant number
of errors occurs during the trajectory reconstruction. In
figure 4 an example of an acquired and elaborated image
is shown.

4. Results

Comparison between atmospheric phenomena and convec-
tion occurring in a water tank is possible by using the
similarity proposed by Deardorff (1970). It is assumed
that the scaling parameters are the convective velocity,
w∗ = 3

√
gαqszi , the height of the convective layerzi and the

convective timet∗ = zi/w∗, whereg indicates the accelera-
tion due to gravity,α the thermal expansion coefficient and
qs the kinematic heat flux at the surface. Results presented
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Figure 11. Transilient matrix at different time intervals.

in non-dimensional form throughout this scaling are not de-
pendent on the particular conditions of the experiment. As a
consequence, the non-dimensional Eulerian statistics do not
vary with time provided that convection is fully developed.
It was observed that, 5 min after heating was applied, the
vertical profiles of Eulerian non-dimensional statistics ob-
tained from data sampled during different time intervals no
longer varied (Cenedese and Querzoli 1994). As a conse-
quence the phenomenon was considered quasi-steady after
that time.

Due to the dimensions of the measuring volume and
to errors during the tracking, the number of recognized
trajectories decreases rapidly with their length. This is
shown in figure 5 where the probability density distribution
of trajectory length is presented as a function of the non-
dimensional time.

In a Eulerian frame of reference, the phenomenon is
steady and the probability density distribution of the vertical
velocity is not symmetrical, with a slightly negative mode
(figure 6). This is due to the fact that the convective

boundary layer is characterized by small and intense
updraughts and large but slow downdraughts (Willis and
Deardorff 1974, Deardorff and Willis 1985, Stull 1988,
Hunt et al 1988).

The Lagrangian mean vertical velocity, at three
different levels, is presented in figure 7, as a function of
the non-dimensional time. It is apparent that, although the
phenomenon is steady from the Eulerian point of view, this
is not true in a Lagrangian framework. The mean velocity
varies with time because this statistic is evaluated along
the trajectories of particles that move around within the
layer, meeting different conditions. Only the asymptotic
limit is zero, that is as far as the velocities are completely
uncorrelated. The mean velocity of particles starting
close to the ground increases for short times because they
cross layers with higher velocity, and an opposite trend
is observed for the particles starting close to the capping
inversion.

The non-symmetry of the Lagrangian auto-correlation
coefficient, plotted in figure 8 at three different heights,
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confirms the Lagrangian non-steadiness of the phenomenon.
Since normalization of the correlation coefficients is done
by means of the Eulerian variance at the starting level of
the trajectories, they are not defined as less than one as in
the case of classical Eulerian coefficients; nevertheless in
this way the original shape of the function is preserved.

The different behaviour of the hot updraughts and cold
downdraughts has been pointed out by the conditional
sampling. The ensemble of trajectories has been divided
into two sets: the first one includes trajectories that initially
move upwards, the second one trajectories that initially
move downwards. Statistics have been computed separately
for the two sets (figure 9). The correlation coefficient
of the vertical velocity is not maximum for a zero time
lag: particles rising from the lower part of the layer
(z/zi = 0.25) exhibit a maximum correlation for a slightly
positive time lag since they are slow in the proximity of
the surface and accelerate through the whole depth of the
layer. On the contrary, descending particles found in that
region decelerate as they get closer to the lower surface
and exhibit the maximum correlation at a negative time
lag. This behaviour is not apparent at mid-height (z/zi =
0.55) where no sudden changes in particle velocity are
imposed by close boundaries. In the upper part of the layer
(z/zi = 0.75) symmetrical behaviour is observed. Due to
the presence of the capping inversion ascending particles
decelerate and their correlation is a maximum for slightly
negative time lags, whereas descending ones accelerate
and exhibit the maximum correlation for a positive time
lag.

According to this behaviour, the 1/e Lagrangian time
scale,TL, of the vertical velocity, computed for positive
time lags (figure 10), increases with height for the
updraughts since this scale is related to the time taken by
the particles to reach the capping inversion. The behaviour
of the descending particles 1/e time scale is different since
in this case the scale is related to the time that particles
take to reach the lower surface. The downdraught time
scales are generally larger than those of the updraughts
because the former are characterized by a lower velocity,
according to the probability density distribution shown in
figure 6.

A more detailed description of the mixing process
can be obtained from analysis of the transilient matrix.
Assuming horizontal homogeneity, and dividing the
investigation field into layers, this matrix represents the
fraction of fluid advected from one layer to another in a
given time interval. Its first index shows the destination
level of mixing and the second the source level. In figure 11
the transilient matrix is presented for four time intervals; the
rows of the matrix are plotted in reverse order in order to
have the height axis increasing upwards. The elements of
the main diagonal indicate the fraction of fluid that does
change layer in the given time. For small time intervals
mixing is concentrated close to this zone since particles
have not had time to mix. As time goes on, larger and larger
zones of the matrix are affected by mixing and have non-
zero values. For times larger thant∗ all the convective layer
is mixed (z/zi < 1) whereas the high values of sources and
destinations larger thanzi remain concentrated close to the

main diagonal, giving evidence that the capping inversion
does not participate in mixing phenomena and pollutants
are confined in the convective layer.

5. Conclusions

Pollutant dispersion phenomena occurring in the convective
boundary layer of the atmosphere have been investigated by
means of particle tracking velocimetry. The flow is steady
from the Eulerian reference frame but not in the Lagrangian
one since particles, during their motion, reach regions that
can be considered homogeneous only in the horizontal
plane. Vertical homogeneity of Lagrangian statistics is
achieved only for very long time intervals, when particles
are completely non-correlated to their initial condition. The
study has been carried out following the particles only for a
few time scales and evidence of vertical homogeneity could
not be given.

Since the characteristic timescale of turbulence is of
the order of 10 s, a standard video-camera is more than
adequate to acquire the successive positions of particles
in the measuring volume. As a matter of fact, only
one image in every ten was sufficient to separate particle
displacements and trajectories. The same technique could
be applied to phenomena with shorter characteristic times
with a system capable of acquiring and recording images at
higher frequencies than those of the investigated flow, for
a long enough time (high-speed video-camera).

The evaluation of the transilient matrix permits
estimation of the pollutant dispersion whatever the height
of the source. Superimposing results from different heights,
multiple and distributed sources can be simulated. Finally,
assuming that horizontal dispersion is very small compared
to transport due to a mean wind, the concentration field
downwind from a source in the presence of a mean wind
can be simulated by means of the Taylor hypothesis. In
fact, the vertical concentration distribution at a distance
1x = Uwind ·1t from the source is obtained by multiplying
the transilient matrix at the given1t by a state vector that
is zero everywhere except for the element corresponding
to the source height (it represents the vertical concentration
distribution at the source location). The procedure can then
be iterated downwind using the state vector obtained in the
previous step (Stull 1993).
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